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TRAJECTORY  OPTIMIZATION BY A DIRECT  DESCENT  PROCESS 

L. E.  Fogarty* 
R .  M. Howe* 

Abstract 

The  problem  considered is that of trajectory  optimization  using  step-by- 

step  descent  to  minimum  cost  along  the  direction of the  cost  gradient with 

respect  to  the  control.  Using a hybrid  computer,  the  gradient is computed 

directly as the  response  to  nearly  impulsive  control  perturbations. A method 

is presented  for  computing  the  gradient when several   terminal  constraints 

are  enforced.  Examples of application of the  method are   presented.  It is 

concluded  that  the  direct  gradient  computation  method  has  some  significant 
~ 

I advantages  over  other  methods. 
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INTRODUCTION 

Computer  methods of solution of variational  problems are of considerable 

interest because only the  simplest  idealized  problems  can  be  treated  analy- 

tically.  The  variational  problem of space  vehicle  trajectory  optimization  has 

received  much  attention  because of the  relatively large increase of pay  load 

in orbit due  to  even a smal l  percentage  decrease of fuel  required. 

A practical  computer  procedure for trajectory  optimization is iterative 

in  nature,  giving a step-by-step  approach  to  the  optimal  control  program. 

Tho  steps ;we taken in the  direction pf steepest  descent,  along  the  function- 

space  gradient of the  cost  with  respect  to  the  control.  Determination of the 

gradient is the  major  computer  problem; if this  can  be  accomplished  rapidly 

and  economically a practically  optimal  control  usually  can  be found easily. 

The  difficulty of computing  the  descent  direction  increases  greatly when 

the  control i s  restricted by the  requirement  that  the  trajectory  must satisfy 

a set of terminal  conditions  or  constraints.  Imposition of terminal  constraints 

changes  the  steepest  descent  direction from that of the  cost  gradient to the 

direction  determined by a n  appropriate  linear  combination of the  cost  gradient 

and  the  gradients of all pf the  constraints  with  respect  to  the  control.  Thus 

the  cost  gradient  and  each of the  constraint  gradients  must  be  computed  and, 

in addition,  auxiliary  computation  must be performed  to  determine  the  coef- 

ficient  multipliers of the  constraint  gradients. 

The  function  space  gradients of the  cost  and  the  terminal  ponstraints  with 

respect  to  the  control  also  may  be  regarded as the  responses at the  terminal 

t ime  to unit  impulsive  changes of the  control,  applied at earlier t imes.  High 

speed  iterative  analog  and  hybrid  computation  methods  which  have  recently 

become  available  permit  one to introduce  directly  an  approximat.ely- 

impulsive  change of control  and  determine  the  resulting  change of the  cost 

and  any  other  terminal  quantities, all simultaneously.  This  paper is concerned 



with  that  very  direct,  simple  method of determining  the  cost  and  constraint 

gradients,  and with  methods of using  the  resulting  information  to  obtain  an 

optimal  control  program. 

STATEMENT OF THE PROBLEM 

We are concerned  with  variation  problems of the  Mayer  type: 

a)  The  cost ,  J,  to  be  minimized  by  selecting  the  best  control or driving 

function, (Y (t),  depends only on the  terminal  values of the  state 

variables , x and  the  terminal  time, t i I F  t=t F: 

J = J(xiF, tF) i = 1 . . . . n (1) 

where 

b)  The  state  variables  must  satisfy  the  equations of motion,  which 

usually are non -linear. 

i = l . .  . n 

c )   The re  may  be a number of terminal  constraints  which  must  be 

satisfied: 

A simple cxample of the  type of problem  considered is the  celebrated 

"Qrachistochrone"  problem  which  may  be  formulated as follows: 
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I -  

Determine  the  shape of a wire down which a bead wi l l  slide,  without 

friction,  from the origin  to xc in least time. The path  shape is specified 

by  the  path  angle  from  the  horizontal as a function of t ime,  CY (t). 
’ yc. 

y l  xc1 Yc 
t = t F  

Figure 1. Brachistochrone  Problem. 

In this  case the equations of motion a re :  

x = i r = g s i n c u = f  (x 1 1 1 ? ~ 2 , ~ 3 ,  

x2 = x  = x  cos CY = f (x ,x 1 2 1 2’x3’’y) 

ir, = y = x s in  a = f3(x1,x2,x3,a) 1 

The  angle of the wire to the horizontal is the  control  or  driving  function, a (t). 
The  terminal  constraints are: 
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cp = x  - x  = o  
O F c  

= y  - y  = o  
1 F c  

The  cost,  which is to  be  minimized, is just  the  terminal  time: 

J(xiF, t ) = t F F  

Problems of the  Mayer  type  have  been  treated  extensively,  using 

gradient  methods by Kelley"),  Bryson,  Carroll,  Mikami,  and Denham (2 ) , 
Wingrove  and R a b ~ ' ~ ) ,  and  others.  These  investigators  have  used  two  entirely 

different  methods  to  determine  the  function  space  gradient of the  cost with 

rec;pect  to  the  control.  Kelley,  Bryson,  et al. , have  used  indirect  adjoint 

eqpation  methods  whereas  Wingrove  and Raby measured  the  gradient  directly 

as the  response  to  an  "impulsive"  change of control. 

The object of the  present  investigation is to  develop  the  direct  gradiept 

method,  using  procedures  related  to  those of Wingrove  and  Raby.  In  parti- 

cular,  we  wish  to  show how the  impulse  response  procedure may be  im- 

plemented on a high-speed  iterative  differential  analyzer  to  obtain a great  

amount of information about the  effect of the  control  variable on the  cost 

and  the  constraints. This information is readily  usable  to  determine a 

practical  optimum  trajectory. 

The  general  gradient  computation  procedure  used  here in minimizing 

t h e  performance  index, J ,  consists of the  following  steps: 

a)  Determine, by any  means, a n  initial  or  nominal  program of the 

driving  function, Cr (t),  which  satisfies  the  termNal  constraints  but 

does not necessarily  minimize  the  cost, J. 

b)  Solve  the  equations of motion  using i i  (t)  and  determine  the  cost of 

using this  program, Jo. 
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c)  Add an  approximately  impulsive  change, K b  to Z so  that a i  
CY = i i i + K 6  a i' Here b a i  means  an  approximation of 6(t - ti), the 

delta  function or unit  impulse.  That is, ba i  is an  approximately 

impulsive  unit  change of a located t = ti. For this  investiga- 

tion w e  used a triangular  shaped  "impulse",  6ai7  shown in Fig. 2. 

' 20"- 
PEAK-100) Kmax 

KSai  , oo- SLOPE - IO 

I t "  

Figure 2.  t'Impulsive"  Control  Perturbation. 
d )  Measure  the  change of J due  to K6 and  plot  against  the  location of a i  

the  impulse, ti.  The  cost  response 65, t o  K6 is approximately 

proportional  to  the  impulse  response,  or  weighting  function, of the 

cost   with  respect  to CY which we wi l l  cal l  W a .  WLy may be viewed 

as the  function  space  gradient of the  cost with respect  to  the  control 

or  driving  function. 

CY i' 

J J 

e )  Simultaneously with (d); measure  and  plot  the  impulse  responses 

of any  terminal  constraints, $I Call   these W:k (k = 1 . . . m). 

Note  that W a  and all W,"" can be determined  simultaneously on a J 
k' 

single  computer  run. 

f )  With  the  gradient of the  cost,  and  that of each of the terminal  con- 

s t ra ints  known, several  different  "steepest  descent!'  procedures 

can be used  to  change  the  control, (Y (t), so that the new cost wi l l  be 

less than the old and  the  terminal  constraints  still wi l l  be  satisfied. 

The  procedure  selected ic; repeated  until no further  improvement of 

J is obtained,  indicating  that J is stationary  and  should  be  checked 

to see  if a minimum  has  been  reached. 

Some of these  procedures  are  discussed in detail in the  examples  presented. 
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Since it was desired  to  accomplish  steps (b), (c),  and (d) many t imes 

each  second  (20/sec  to  60/sec)  most  operations  were  accomplished  auto- 

matically, by means of the  control  features of the  iterative  differential 

analyzer.  

ITERATIVE  DIFFERENTIAL " ~ .  - .. ANALYZER . . "  " 

The  iterative  differential  analyzer  used was a small  (48 applifier)   analog 

corpputer  with 12 integrators,  each with  individually  controllable  mode 

switching,  and a small  complement of parallel,  patchable,  asynchronous 

logic  elements.  See  Fig. 3 .  Two  problem  patch-boards  are  used, one for the 

analog  signals, one for  logic  signals.  The  equations  to  be  solved are patched 

011 tho xnalog l ~ o ; ~ r d .  tho control  scheme is patched on the logic  board. A l l  

control is by means of logic  signals:  logic "0" (- 6 v )  and  logic "1" (0 volts). 

All  commupication  between  the  analog  and  logic  elements is by means of logic 

level  signals. 

The  logic  complement  consists of 18 "OR" gates,  1 4  flip-flops, 4 variable 

pulsers  (one-shot  multi-vibrators) and one  4-cell  shift  register.  The output 

of each  logic  element  and  the  conlplement of the output are  terlninated on the 

logic  board, so that "OR", "AND", "NOR" and "NAND" operations  can  be 

performed.  Logic  level  signals  operate  the  integrator mode controls  and 4 

free  high-speed  switches,  providing  analog  operations  under  control of the 

logic  elements. 

Communic;ttion from thc  analog  hoard  to  the  logic  board is by means of 

logic  signal  outputs  from  four  comparators.  Comparator  inputs  are on the 

analog  board,  the output i s  on the logic  board. When tllc SUIII of the input 

voltages  to a comparator is greater  than  zero,  the  output on the  logic  board 

is logic "O", otherwise  it  is  logic "1". A small  amount of hysterisis is 

provided  for  noise  suppression. 
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Figure 3 .  Iterative  Differential  Analyzer. 



THE ITERATIVE CONTROL SCHEME 

The  control  scheme  used  in  determining  the  impulse  responses  applies 

to thc general  problem  and is shown in the  block  diagram,  Fig. 4. The 

equations of motion,  cost  computation,  and  terminal  constraint  computation 

are   pecul iar  to a given  problem  and are   discussed in  the  examples.  The 

method of using the  gradient  information in the steepest  descent  procedure 

as well as the  method of handling  terminal  constraints  also  are  discussed 

separately. 

There  are three periods  during  one  computation  cycle; we wi l l  call  them 
I I C I I ,  IITII, and VlR71. The "C" (compute)  period  runs  from  the  start of solu- 

tion of the  equations of motion  until a stopping  condition is reached  at t = t 

The "T" (track)  period  runs  from t = t until  sufficient  time for memory  units, F 
(tnack  and hold amplifiers  here),  to  have  accepted  the  values  to  be  held. At 

the end of the "T" period,  the  track  and hold units  are  placed  in  the "Hold" 

mode  and  then  the  trajectory  integrators  are  placed in the  "Reset" or "IC" 

mode.  The "R" (reset)  period  lasts  sufficient  time for the  integrators  to 

accept the initial  conditions, for the  impulse K6 to  be  advanced  to a new 

location,  t. and for any  other parameter  changes  to  be  made,  after which 

a new "C" period starts. The  three  periods, "C", "T", "R" are  determined 

by a three  period  "clock",  shown in Fig. 5. The end of the "C" period is 

determined by the  occurrence of a stopping  event:  either t = t if t is 

fixed, or (x t ) = 0. When the  stopping  event  occurs, a pylser,  PI, is 

triggered  causing  the  output of PI to  be  logic  one  for a preset  t ime  period 

which is the "T" period. When PI output drops  to  logic  zero at the end of 

the  l 'T''  period, P is triggered  to  start   the "R" period  and  when P2 output 

F' 

cui 

1+17 

F' F 
0 F' F 

2 
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I""--"""- 
I 1 

GENERATE TIME 
VOLTAGE  DURING "CI' 

HOLD  DURING 'IT" 
RESET  DURING 'I R" /it 

I GENERATE IMPULSE 
LOCATION VOLTAGE. I I GENERATE 1 

Et i  , CHANGE ' 1 4 IMPULSE 1 
DURING "R", HOLD 
ALL OTHER TIME 

Sai ( t , t i  I 

COMPUTE  COST, J ( x i  , i] 
AND 

E t  ' CONSTRAINT ERRORS, 
8@ K K =O-- m 

(0 

1 

T 

JO I 
C A  

SAMPLE COST, 

DURING "T':HOLD 
DURING "C" AND k" 

J(xi l t ) ,  8 t ' tF 
SUETRACT  COST, 

Jo,FOR NO 
IMPULSE, 
8ai = O 

J I  I I I 
I 1 
L """"" -I 

Figure 4. Block Diagram of Impulse  Response Computation. 
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R' 

P I  
T(TRIGGER1 T 

I 

4" T 
P2  

PULSER#2 - 
R 

- 
P2 

P3 R' 

PI T' 
P3 

Figure 5 .  Timing Signal Generator. 



drops  to  zero  the next "C" period starts. (As shown in Fig. 5 a short  delay 

between the end of the "T" period  and start of the  "Reset"  period is generated 

by pulser P to  ensure that the  track  and hold  amplifiers are holding  before 

the  integrator  "Reset" mode is started. ) The  control signals are obtained 

by cr)n!bining suitably the "C", "T", "R" signals  from  the  clock.  In  addition, 

magter  control  signals aye introduced  to start the  computatiop,  to  interrupt 

it dvring a sequence of iterations,  and to initialize all element8  in  preparation 

f p r  a. new run. 

3 

The  impulsive  change of control, 6 is generated by the  simple  diode 

circuit  shown  in  Fig. 6. The  time  location of the  impulse,  t is controlled 

by the  vDltage,  Eti,  the  output of an integrator with a small  constant  input. 

During  the "R" period  while  the  equations of motion are being  initialized,  the 

E integrator is i n  lhc 'tOpcrate"  mode,  it is in  the "Hold" mode at all other 

times  during a run.  Thus  the  E  voltage is increased by a small constant 

amount  before  each  computation  step,  automatically  advancing  the  impulse 

location, t in  small  equal  increments  from 0 to  t  during a complete  run. 

(r i' 

i' 

t i  

t i  

i' F 

." EXAMPLE . " 1: BRACHISTOCHRONE . " .. " PROBLEM 

A s  a first   demonstration of the  direct  gradient  measurement  method, 

consider  the  brachistochrone  problem  mentioned  earlier,  but with a single 

terpinal   constraint ,  x = 1. That is, determine  the  shape of the  wire down 

which a bead wi l l  slide  without  friction,  from  the  origin  to a wall located  at 

x = 1, in least t ime. 

F 

l l  



+ E t i  . I  M 
+ I  

O P - R  . I  M - 
HOLD .-K 

. I  M 

co 
CL - I  P HOLD OP-c  -T TO COST 

RESET- R 
TRACK & HOLD 

+Et  - E t i $ I l - +  
E t  = K l  t 
Eti = K2 (number of iteration) 0 5 t L t f  

Figure 6.  Diode Circuit  for  Generating  Control  Perturbation: KGui. 
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Figure 7. Brachistochrone  Example. 

The  control or driving  function, cy (t), is the  angle of the  wire  to  the  hori- 

zontal,  the  cost is the  termina1  time  itself, 'J = t and  there is one terminal 

constraint, ct, = (xF - 1) = 0. 
F 

0 

Whcn the tcrminnl lime is included in the  cost and is therefore  variable, 

as ip  this  case,  some  condition  or  event  other  than t = t must  be  used  to 

stop  the  computation. In th i s  case,  the  obvious  choice is the  oQcurrence of 

x = x . Thus  the  voltage x - x is used as the input to  the  stopping-condi- 

tiop  comparator in Figs. 4 or  5. The  logic  signal  output of the  comparator 

terminates the "C" period  and starts  the "T" period. An integrator with a 

constant input gives a voltage  proportional  to  time,  Et,  this  voltage  at 

I: = t (i. e .  , when x = x ), is the input to  the  "Sample  Cost"  block in Fig. 4 

(a track and  hold amplifier). For this  simple  case,  the only terminal  con- 

straint  is used as a stopping  condition,  and  every  solution  therefore satisfies 

the  constraint.  It  therefore is unnecessary  to  measure any constraint 

F 

C C 

F' C 

gradients, W $k . 
cy 
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We chose as a first nominal  trajectory cy = const. = 45 and  measured 

the  gradient of the  terminal  t ime, W about cy = 45 . Figure 8 shows the plot 

0 

0 
cy’ 

Figure 8. Response of Terminal  Time,  Erachistochrone, 
One Terminal  Constraint  Used as Stopping  Condition. 

J takep  directly  from  the x - y recorder ,  of W a  vs. t where  it w i l l  be  recalled 

that t .  is the t ime of application of the  control  impulse, K6 A11 of the  points 

Shown were  computed  and  plotted in  about 20 seconds-the  speed  limitation 

w a s  the x - y plotter.  The  gradient  in this simple  case  can  be  Oetermined 

analytic;llly to be proportional  to  time,  which  checks  within  tho  accuracy of 

the  plotter. 

i’ 

1 cy i’ 

The  usual  steepest  descent  procedure is to  generate a new control 

program, CY l(t), with 

The  constant, K ,  is selected  to  produce a desired  achievable &mount of im- 

provement of J. 
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In this case,   since W is linear in t ime,  = a - b t and  tne  constants 
CY 

a and b were simply  adjusted  by .hand until t appeared  to  be  minimized. 

(Note that this is just  the first Steps of the  Rayleigh-Ritz  procedure, with the 
F 

assumption that a (t) can be expanded  in a power series. ) Because of the bigh 

iteration rate,  the  apparent  minimum w a s  reached in only a few trial settings 

of a and b. Figure 9 stlows  the  final  control  program, with  maximum  posi- 

tive  and  negative  control  perturbations  superimposed.  Figure 10 shows  the 

trajectory  result ing  from  the  best   sett ings of a and  b,  and  also  shows the 

affect  on the  trajectory of the  maximum  control  perturbations that were  used. 

Figure 9. Optimum  Driving  Function  Prograin.  Brachistochrone, 
with  Maximum  Positive and Negative  "Iml~ulsive"  Change. 

15 
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Figure 10. Brachistochrone, Showing  Effect of Maximum 
Positive  and  Negative  Impulses in a .  

Because  it was known that  the  control  program  achieved  above was near 

the  desired  optimal  program, it was tested  for  optimality as follows: at a 

number of t imes ,  t the  impulse  response, 6 J  was  plotted  against  the  size 

(area) of the  impulse.  That is, instead of using a fixed  impulse  size, K6 

(where K is fixed)  and  advancing  the  location of 6Qi  at each  iteration,  the 

location, t was  fixed for  a series of iterations,  with  each  iteration  cor- 

responding  to a different  impulse area, K. At  each  ti,  the  value of 6 J  was 

plotted  against  the area of the  impulse,  resulting  in a plot from which  the 

second  variation  could  be  determined.  Figure 11 shows  the  results of this 

procedure. It is seen  that  the  gradient  does  indeed  vanish,  within  the  accuracy of 

i ' 

a i  

i '  
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Figure 11. Plots of 65 vs .  Is for Various t (Y Optimal. 
Erachistochrone  Problem. i '  
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measurement,  indicating that the  best  control has been  achieved.  The final 

trajectory was compared with the known analytical  solution (a cycloid)  and 

w a s  found to  agree  within a few percent. 

TERMINAL CONSTRAINTS 

When the re   a r e  no terminal  constraints, or if the only constraint is used 

as a stopping  condition as in the  previous  example,  the  descent to  the  mini- 

mum  cost  normally  proceeds  step-by-step  in  proportion  to  the  measured 

gradient,  since  this is the  direction of steepest  descent. If additional  terminal 

constraints  are  imposed  (for  ex3mple if the  terminal  value of y is specified 

instead o f  being- lefl free i n  the  brachistochrone  problem)  then it is apparent 

that  the  direction of descent  generally  must  be  changed to avoid  violating  the 

constraints. 

For simplicity,  consider  the  case of a single  terminal  constraint, 

@ (x. ) = 0, and  let  the  terminal  time  be  fixed. A s  before,  let  the  impulse 

response of the  cost  with  respect t o  the  control-  be W and  the  impulse 

response of the  constraipt  be W a .  If a descent  step is taken  in  the  direction 

of the  cost  gradient,  without  regard  for  the  constraint, so  that SCY = K W a ,  J J  

the cost w i l l  be dccrcased hut  naturally,  the  constraint, (/)1 = 0, will  be 

violated. To f i r s t   o rder ,   the   cons t ra in t   e r ror ,  6@ wi l l  be:  

1 IF J 

9 
CY 

J 

1 

tF 
= 1 KJ W a  J @  WCY d7 

0 

In qrder  to  correct  the  constraint   error in the  most  efficient  way,  that is, to 

reduce  the  error  to  zero in  the  direction of steepest  descent, we should  add 

to tile control  function an increment 

6cr = K  @ @  w a  
@ 

18 



where K is adjusted to give 6@l = 0. Using this condition, @ 

0 

f rom which: 

we have  used  the  notation: 

0 

t F  
I = I Oy:)2 d r  . 

@@ 
0 

Thus, with a single  "free"  terminal  constraint one should  take 

whcre K dctermines  the  size of the  descent  step and  the ratio I / I  is 

such  that  the  constraint, (,b = 0 ,  is not violated,  to first. order.  (If a  con- 

straint   error  existed  at   the end of the  previous  iteration, of course,  this 

e r r o r  would be  eliminated,  to  first  order, by taking 6G1 # 0 in Eq. (ll).) 
If more  than  one  constraint is imposed, S O  that  it is required  that 

J@ +#) 
1 

Q = O  k = l . .  . . m 
k (15) 

it  can  be  shown  that  the  descent  steps  should  proceed in the  direction of a 
linear  combination of the impulse  responses: 

" 
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Tho C are determined so that  none of the constraints wi l l  be  violated,  to 

first order.  Using the condition that all 6 4  = 0, it  can  be shpwn that 
k 

k 

Ak c = -  
k A  

where 

I1  1 112 

2 1  I2 2 

. . . . .  I 1 m 

A :: 1 . . . . .  

and Ak is the same  determinant as A except.that  the kth column is replaced by 

- I1J 

- '2J 

- I  m J  

We have  used  the  notation 

tF 
I. = 1 W G i W J d 7  
1J C Y C Y  

0 
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It is apparent  that this procedure, which is essentially  that  given by Bryson 

et al. (2), substantially  increases  the  computatiQn  load,  and  can  be  expected 

to  have a n  adverse  effect on the  convergence of the  iterative  steepest  descent 

process . 

Our  procedure  for  handling  terminal  constraints was devised  to  utilize 

the  high  iteration rate of the  differential  analyzer in determining,  by  direct 

computation,  the  steepest  descent  direction shown in Eq. (16), orthogonal 

to  the  impulse  responses of the  terminal  oonstraints. 

For simplicity,  consider first the  case of a single  terminal  constraint  which 

is not  used as a stopping  condition.  Assume  that  the  impulse  response of the 

constraint  has  been  measured as described  earlier,  so that W is known. 

Now consider  the  response of the  cost  to an incremental  control  function of 

time which is composed of a linear  combination of a unit  impulse  and  the  con- 

straipt  impulse  response  function: 

cp 
cy 

The  multiplier, D ,  is to  be  chosen so that  the  constraint is satisfied,  and D 

therefore  is  a function of the  location of the  impulse, ti. Denoting  the  response 

of the cost to 6cr with a superscript +, then,  to  first  order: 

6J')= jF W cu J 6cu d T =  tF Wcu J (K6 + D W ' ) ) T  cui cy 

0 0 

Using  the  properties o€ the  unit  impulse: 

6 5  cp = K W Q  (ti) + D(ti) I J 
Jd, 

sincc D is to bc adjuslcd,  at  each  t. so  that 6' = 0, 
1' 
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tF tF 
6 + =  j W a  @ 6ff dT = j W: (K6 i- D W f f )  @ d7 = 0 a i  

0 0 

and  therefore: 

- K W  @ (t.) 
D(ti) = 

c y 1  

I (25) 
@@ 

Using  this  value for D(t.),  the  response of the cost   to t h e  augmented  impulse 

becomes : 
1 

Comparing  this  expression  with Eq. (14), we see  that  the  response  to  the 

augmented  impulse is in  the  direction of steepest  descent,  orthogonal  to  the 

constraint  influence  function. 

When there  are  several   terminal  constraints  to  be  satisfied  simultaneously,  

it can  be  shown  by a process  similar  to  the  preceeding  that 

whjch agrees  with Eq. (16). 6 5  is the  response  to  the  augmented  impulsive 

control  perturbation: 

@ 

The D (t ) are   determined by the  requirement  that 6 @  = 0, k = 1 . , . m. k i  k 
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We modified  our  control  program so that  the  response 6 J  9 could be 

computed as follows : 

The  constraint  gradients, W " were first computed all simultaneously, a 
using  the  proccdurc shown in the  block  diagram,  Fig. 4. The  functions 

W (t) then were set  on  diode  function  generators  and a simple  iterative  auto- f/)k 
a 

matic  parameter  adjustment  scheme 

that all d @  were  zero,   at   each  t . .  k 1 

There   a r e  a number of iterative 

was used to  set the  parameters,  D so k' 

parameter  adjustment  procedures  which 

cap  be  used  to  set  the  Since  the W,"" represent  steepest.  descent 

directions  for  the 6 4  if the 6 @  and the  adjustment  steps of the D are small 

enough,  -either a simultaneous  or a sequential  parameter  adjustment  procedure 

should  converge. W e  therefore  chose  the  simplest  simultaneous  adjustment 

scheme,  represented by the  block  diagram shown in Fig. 12 .  For a single 

constraint,  the  circuit  gain  can  be  adjusted so tha t  any sma l l   e r ro r ,  6cp, 

is  removed  to a good approximation i n  a single  step. When there   a re   severa l  

constraints which interact,   more  i terations  are  required  at   each t .  but  con- 

vergence  should  be  obtained  since  the  errors  are  reduced in the  direction of 

Steepest  descent.  Also  note  that,  (assuming  the  constraints  to  be  linearly 

independent)  an  orthogonalization  procedure  could  be  used  to  minimize 

interaction. For tllc  example  presented  here, it was found  that  the  con- 

straint   errors  were  eliminated  to a good approximation in four  iterations. 

The  control  scheme  therefore  was  modified  to  provide  four  adjustments 

k' k k 

1 

of the D at each  t.   before 6 5  was  plotted  and  the  impulse  shifted  to t cp 
k 1 i+l ' 

The  four  bit shift  register  was  used  to  count  the  iterations;  the  plotter  signal 

and  the  signal  to  increment E in Fig. 6 were  taken f rom the  fourth  register 

stage.   This  procedure,  of course,  increased  the  actual  computing  time by 

a factor of four,  but  it st i l l  w a s  negligible in comparison with other  times 

required .for example  adjusting the hand-sd  func-tion generators.  

t i  
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for '  m constraints, 
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Figure 12.  Iterative Loop for  Satisfying One Terminal  Constraint. 



- EXAMPLE .. ~ 2: ~~ SATELLITE . - .  .. .... LAUNCH - ~. " TRAJECTORY  OPTIMIZATION 

As  an  example of the  use of impulse  response  for  trajectory  optimiza- 

tion  with  terminal  constraints, we consider a satellite  launch  problem: 

Determine  the  best  program of thrust  angle  to  the  horizontal  to  launch' 

a satellite  into a circular  orbit at prescribed  altitude  using  minimum  fuel 

(see Fig. 13) .  

I F /  

I X 

Figure 13 .  Satellite  Launch  Optimization  Problem. 

An  analytical  solution of th i s  general  problem is not  known,  but under  the 

nssumptions of n flat e a r t h  with  constant  gravity,  negligible  atmospheric 



forces  and  thrust  magnitude  proportional  to a constant  fuel flow ra te  it is 

known that, for  the  optimal  program,  the  tangent of the  thrust  angle  varies 

linearly  with  time@).  Since we wished  to  have at least a partial  analytical 

check of our results,  the  above  assumptions  were  included in our problem. 

With  the  notation  shown i n  Fig. 13, the  control  function, cy (t), is the  angle 

of the  thrust  to  the  horizontal,  minimum  fuel  corresponds  to  minimum  time 

.J . t I: 

There  are   three  terminal   constraints :  

We selected  conslants for t h e  problem such that u is the  circular  velocity c 
at the  orbit  altitude, yc,  which w a s  1 /20  o f  thelorhit  radius.  Initial  lift-off 

acceleration was se t  at 1 . 2  g and  maximum  burning  time  (mass  approaching 

zero)  was 420 seconds. We selected (1, as a stopping  condition,  and  there- 

fo re  had two  "free"  terminal  constraints, Q, and Q, to  be  satisfied. 
0 

1 27 

Because of the  rather low initial  acceleration, it is apparent  that the 

rocket  must  be  launched  nearly  vertically. We therefore  chose  the  thrust 

angle program shown in Fig. 1 4  for  t h e  first nominal  control  program;  the 

result ing  trajectory is shown in Fig. 15. The  control  program  slope  and 

breakpoint  were  adjusted by  hand until  the  terminal  constraints  were  satisfied. 

The  impulse  responses Of the  two terminal  constraints, @ and 6 then  were 

measured,  simultaneously,  using  the  procedure  shown in the  block  diagram, 

Fig. 4 .  These   a r e  shown in Figs. 16a  and 16b along with tile approxilnations 

of them which were  set  on diode  function  generators  for  use in  the  next  pro- 

gram  step.  

1 2 
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Figure 14. Initial  Control  Progrnln. 

COST - .449 

Figure 15. Initial Trajectory: Satellite Launch. 

c 

27 



Figure 16a. Impulse  Response of Terminal  Vertical 
Velocity  Component. 
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With W:' and W:a known, the  response of the  cost  to  the  control 

6a = KGai + Dl W:' + D2 W z  was measured,  and is shown in Fig.  17. 

The  multipliers Dl and p2 were adjusted  autnmatically at each ti by means 

-of two  loops of the type Bhown in  Fig. 12. Four  iterations  to  adjust Dl and 

D wcre pcrl'orlned ;L\ qpuh ti,  before 6J was plotted for that f .  and the 

impulse  advanced  to t 

(I, 
2 1 

i+l* 

With 6 J  knawn, we  next set an  approximation of it on a hqnd set diode 

function  generator  and  added K6J  t o  5. The  automatic  constraint  satisfaction 

Qircuitry was left in  operation  while  the  constant of proportionality was ad- 

justed, so that the  constants Dl and D were  changed  automatically  during 2 
the  adjustment of K. The  constant, K ,  was adjusted by hand until no  further 

decrease of the  cost  could  be  noticed  and D was recorded, as shown  in 

Fig. 18a. Note  that by lcaving the  constraint  satisfaction  circpilry in opera- 

tiop,  the  descent  direction is altered  automatically  to  account for  the  finite 

size  step.   Thus no constraint   error  exists at the  beginning of the next step. 

The new nominal  control  program, 5 was se t  on a diode  fuqction  generator, 

the  gradients W:' and W:' were  computed  again  (they  had  changed only a 

small amount)  and  the  procedure w a s  repeated a second  time.  The  second 6 J  @ 

is shown in Fig.  18b. 

@ 

6 

1 7  

DISCUSSION 
. .. - "" - 

The  control  program  resulting  from only three  descent  steps is shown  in 

Fig. 19a  along  with a program  that  has  the  same end  points  but for which the 

taqgent  varies  linearly  with  time, a known characterist ic of the  optimal  pro- 

gram.  It is apparent that we had not quite  reached  the  optimal  program, a 

fact  confirmed by the  remaining  small  gradient, shown in Fig.  19b. 

The  totaldecrease of cost  achieved was quite  small; 1% for the first itera- 

t iqn ,  about 0. 1% fo r  tlle second. Adding the  small  amount  indicated  by  the re- 

maining  gradient  shown  in  Fig. 19b made a barely  measurable  change  in  total  cost, 
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Figure  17a,b.  Nominal  Control  Program  and  Impulse 
Response of Final Time,  6J$,  Sateilite 

Launch, @I = $ = 0. 
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Figure 18a, b. Control  Program  and  Impulse  Response After 
First Iteration,  Satellite  Launch. 
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Figure 19a: b. Control  Program and Impulse  Response  After 
Three  Iterations.  Satellite Launch. 
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The  computation time required to determine a complete set of gradients 

was only a few  seconds.  Most of our  time  was  used in adjusting  the  hand-set 

function  generators  and  operating  the  plotter. If a fast hybrid  Computer  with 

automatic  digital  function  storage  and  generation  equipment  had  been  avail- 

able,  the  descent to an  acceptable  minimum  cost  could  have  been  ac - 
complished  in less than a minute,  even  with  several  terminal  constraints 

to be  satisfied. 

A s  an  indication of the  sensitivity of the  method,  note  in Flg. 19 that 

quite  small  irregularities  in  the  nominal  control  program  were  detected  and 

would l)e reduced  in thc following  iteration.  The  fact  that  they  were not elim- 

inated is due  to  our  inaccuracy  in  setting  the  hand-set  function  generators. 

We feel that  this  method  has  several  significant  advantages  over  the  more 

common  method  using  adjoint  equations. It is very  simple  and  easy  to  under- 

stand.  The  mathematical  techniques  involved are elementary  and  the  infor- 

mation  available  to  the  analyst  can  be  'interpreted  readily. 

A considerable  advantage is that it is not necessary  to  l inearize  the 

equations of motion, wllich may be difficult  when arbitrary  non-analytical 

functions  are  involved,  the  usual case. 

Impulse  response of any  number of terminal  quantities  can  be  computed, 

all simultaneously. 

By using  the  automatic  parameter  adjustment  method of satisfying ter- 

minal  constraints, the descent  direction is continually  altered  to  account for 

finite-sized  descent steps. Sizable  descent  steps  can be taken  and  an  acceptable 

miqimum  cost  achieved  in only a few  steps. It is not  difficult to  check  the 

second  variation  to assure that  the  cost is near at least a local  minimum. 

Presumably,   this would also detect the  presence of sharp  ridges and  other 

types of discontinuities,  although  we  have not demonstrated  this. 
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A probable  disadvantage,  which we have  not  investigated, is that  scaling 

of the  non-linear  equations of motion  cannot  be  expected  to  be as favorable as 

is that of the  equations  adjoint  to  the  linearized  equations of motion.  Although 

it is not  obvious  that  this  means  that  the  impulse  response wi l l  not be as 

accurate as the  gradient  determined by the  adjoint  method,  this  point  requires 

further  investigation. 

A N  ALTERNATIVE - " .  ~ MeTHOD . .___ OF COMPUTING IMPULSE RESPONSE ___ 

When several   terminal  constraints are imposed,  the  magpitude of the  cost 

impulse  response  may  be  quite  small  and  difficult  to  compute  accurately.  The 

following  scheme,  which  we  have  not yet demonstrated, w a s  devised to per  - 
mit  improved  computation  scaling  and  hence  more  precise  determination of 

the  gradient. 

Instead of introducing  the  impulsive  perturbation of the  apntrol  directly 

into the differential  equations of motion, w e  propose to introduce  the  equiva- 

lent step  changes of the  state  variables which  would result  from  the  control 

perturbation. 

The  equations of motion,  using  the  control  function CY = f? +  CY, are: 

x. = f i ( X 1 ? X 2 , .  . . .x 5 + 6 a ,  t )  
1 n' 

Fpr a small   control  perturbation,   CY, we assume  that  the  equations  can  be 

linearized in CY. Theq,  to first order :  

t 

X (t) = X + 1 fi(X1, X2. . . . X  ,Cy , T ) ~ T  
- 

i io  n. 
0 

0 
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Fqr a n  impulsive ~ C Y  , 

afi 

Jff t-t 
x.(t)  = K'(t) + K - 

1 1 
u(t - ti) 

i 

where 

t 

(33) 

(3 4) 

0 

and  u(t - t . )  is a unit step  occurring at t = t . .  
1 1 

The c?l'l'ccL o f  a 1 1  in lpuls ivc  control  perturbation is synthcsizcd by making 

the  ,step  changes of state  variables  tndicated by Eq. (34). By using  this al- 

ternative  method,  it  should  be  possible  to  compute  the  effect of quite  sizable 

control  perturbations without  encountering  problems  due  to  non-linearity 

with respect  to  the  control  function. 

CONCLUSIONS 

On the  basis of our  limited  experience, we believe  that  direct  computa- 

tian of impulse  response shows great  promise as a simple,  fast,  and  accurate 

method of trajectory  optimization.  Imposition of several  terminal constraints 

reduced  the  cost  impulse  response  significantly  and  increased  required  computing 

tlnle but  did  not cause  other  computation  difficulties in the  cases we have 

investigated. Rapid convergence  to a practically  minimum  c9st  has  been ob- 

tained in all cases  investigated so  fa r .  

A n  alternative  direct  method of computing  impulse  respanse is proposed. 

TJlis nlelhod should permit  better  computation  scaling a n d  more  accurate 

cqmputation of the  gradient. 
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